A Divide-and-Conquer Approach to Compressed Sensing MRI

نویسندگان

  • Liyan Sun
  • Zhiwen Fan
  • Xinghao Ding
  • Congbo Cai
  • Yue Huang
  • John Paisley
چکیده

Compressed sensing (CS) theory assures us that we can accurately reconstruct magnetic resonance images using fewer k-space measurements than the Nyquist sampling rate requires. In traditional CS-MRI inversion methods, the fact that the energy within the Fourier measurement domain is distributed non-uniformly is often neglected during reconstruction. As a result, more densely sampled low-frequency information tends to dominate penalization schemes for reconstructing MRI at the expense of highfrequency details. In this paper, we propose a new framework for CS-MRI inversion in which we decompose the observed k-space data into “subspaces” via sets of filters in a lossless way, and reconstruct the images in these various spaces individually using off-the-shelf algorithms. We then fuse the results to obtain the final reconstruction. In this way we are able to focus reconstruction on frequency information within the entire k-space more equally, preserving both high and low frequency details. We demonstrate that the proposed framework is competitive with state-of-the-art methods in CS-MRI in terms of quantitative performance, and often improves an algorithm’s results qualitatively compared with its direct application to k-space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Free Vibration Analysis of Repetitive Structures using Decomposition, and Divide-Conquer Methods

This paper consists of three sections. In the first section an efficient method is used for decomposition of the canonical matrices associated with repetitive structures. to this end, cylindrical coordinate system, as well as a special numbering scheme were employed. In the second section, divide and conquer method have been used for eigensolution of these structures, where the matrices are in ...

متن کامل

Improved k-t FOCUSS using a sparse Bayesian learning

Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an l1-norm based compressed sensing dynamic MRI called k-t FOCUSS which outperforms the existing methods. However, it is known that the...

متن کامل

Noise Synthetic Aperture Radar (SAR) Imagery Compressing and Reconstruction Based on Compressed Sensing

In this paper, a denoise approach is proposed to reduce the speckle noise in SAR images based on compress sensing. Through the skill of compressed sensing, we divide the image into some blocks, and propose an image reconstruction method based on block compressing sensing with Orthogonal Matching Pursuit. By adding some simulated speckle noise in the SAR image, the performance of the proposed ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018